Levels of sentiment analysis

Sentiment analysis can be done on different levels of granularity. We could determine the sentiment of a complete review which would give us something similar to the star ratings. We can then go down to a more detailed level, e.g., sentences or to aspects.

Document-level analysis
Input: Text of a complete document
Output: Polarity (as a label positive/negative/neutral or rating on a scale)

This task can be done fairly reliable with automatic methods, as there is usually some redundancy, so if the method misses one clue, there are other clues that are sufficient to know what polarity is expressed. Document-level analysis makes a few assumptions that may not be true. First, it assumes that a document talks about a single target and that all opinion expressions refer to this target. This may be true in some cases, but especially in longer reviews people like to compare the product they are discussing to other similar products, they may describe the plot of a movie or book, they may give opinions about the delivery, tell stories about how they got the product as a gift, and so on. Second, the assumption is that one document expresses one opinion, but human authors may be undecided. Finally, it assumes that the complete review expresses the opinion of one author, but there may be parts where other people’s opinions are cited (for completeness or to refute them).

Sentence-level analysis
Input: One sentence
Output: Polarity + target

On sentence level, we can add the task of finding out what the sentence talks about (the target) to the task of determining the sentiment. While this level of analysis allows us in some cases to overcome the difficulties we talked about on document level, it still makes the same assumptions for each sentence. And all of them may be false even in a single sentence, there may be more than one target ("A is better than B"), more than one opinion ("I liked the UI, but the ring tones were horrible") or opinions of more than one person ("I liked the size, but my wife hated it").

Aspect-level analysis
Input: A document or sentence
Output: many tuples of (polarity, target, possibly holder)

Instead of using the linguistic units of a sentence or a document, we can use individual opinion expressions as the main unit of what we want to extract. A sentence "I liked the UI, but my wife thought the ring tones were horrible" would result in two tuples: (positive, UI, author) and (negative, ring tones, my wife). The different tuples can then be added to get one polarity per aspect, per holder or even an overall polarity

This entry was posted in NLP and tagged , by swk. Bookmark the permalink.

About swk

I am a computational linguist, teacher of computer science and above all a huge fan of LaTeX. I use LaTeX for everything, including things you never wanted to do with LaTeX. My latest love is lilypond, aka LaTeX for music. I'll post at irregular intervals about cool stuff, stupid hacks and annoying settings I want to remember for the future.